Уборка в доме
Назад

Что в Белизне тебе моей или Справочное пособие по гипохлориту натрия («хлорке») / Хабр

Опубликовано: 12.07.2020
Время на чтение: 8 мин
0
2

Что делать?

Согласно общему мнению – лучше не допустить появления хлораминов, чем с ними бороться. Предотвратить насыщение воды хлораминами помогает

  • Постоянное поддержание уровня pH
  • Надежная система фильтрации воды
  • Озонирование воды

Если же все-таки необходимо избавляться от хлораминов, то почти единственный верный способ – гиперхлорирование воды. Хлор должен быть добавлен в такой пропорции, чтобы содержание свободного хлора в 10 раз превысило концентрацию связанного. Такой метод имеет ряд побочных эффектов. Прежде всего, если добавить хлора меньше, чем требуется, процедура приведет к обратному эффекту – увеличению концентрации хлораминов.

При правильно проведенном гиперхлорировании уровень свободного хлора в воде будет небезопасным для человека. Бассейн должен быть закрыт для посещения, пока концентрация свободного хлора в воде не станет допустимой. Ускорить этот процесс можно путем разбавления воды, напорной фильтрацией воды, дехлорированием с помощью реагентов.

В любом случае запах хлорки в бассейне – знак того, что воду нужно чистить, а вовсе не того, что в воде слишком много хлорки.

Замечание 1. о других «хлорных дезинфектантах»

Помимо упомянутых уже мной гипохлорита натрия и гипохлорита кальция, существуют и другие вещества, способные активно продуцировать хлор (ну а хлор с водой = «малостабильная хлорноватистая кислота HOCl» и далее опять см. п. «Хлорочка, как дезинфектант»). Притом там могут быть и вещества органической природы.

На просторах интернета я нашел информацию (скорее всего выдранную из какой-то советской книги по гражданского обороне — потому что многие наименования, да и сами препараты давно перестали существовать). Эта таблица дает примерное представление о спектре препаратов и их сравнительной «дезмощности по хлору».


Возможно, читателю может встретится такой дезинфектант, как хлорцин (это НЕ украинская мазь с одноименным названием). Это Na-ДХЦК (натриевая соль дихлоризоциануровой кислоты — хлорцин Н) — 30,0% (или К-ДХЦК — 20,0% — хлорцин К), триполифосфат натрия — 6%, ПАВ (сульфонол) -3%, сульфат натрия — до 100%. Хлорцин содержит 11 — 15% активного хлора. Может встречатся и т.н. препарат ДП-2. Зашифрованного названия не стоит пугаться, по сути — обычная трихлороизоциануровая кислота с добавками ПАВ.

Сюда ж внесу и замечание от eteh: "… электролизный ГПХН возможен и 5-7%. При получении, соответственно, не проточным электролизом, а мембранным — из соли и воды без добавления дополнительных реагентов. Ну а выше, да, там только отдельно готовить концентрированный щелочной раствор для насыщения хлором".

Замечание 3. об очистке воды в полевых условиях

Тема очистки воды достаточно обширна и вполне достойна отдельной статьи. Я же кратко упомяну об очистке воды в полевых условиях. Ведь бывают ситуации, когда ни то что озонатор или уф-лампу использовать, а даже и закипятить воду тяжело. Поэтому у химических обеззараживателей,

на мой взгляд

, пока особой альтернативы не видно. Хлорное обеззараживание может считаться старейшим вариантом полевой дезинфекции воды. Американские военные еще во время Второй мировой войны в составе сухпайка имели таблетки «Halazone», с натриевой солью 4-[(дихлорамино)сульфонил]бензойной кислоты.

Потом постепенно это вещество вытеснил дихлоризоцианурат натрия (тот самых ДХЦК), именно он был в составе широко известных в узких кругах таблеток «Пантоцид». Американский вариант — это ДХЦК спрессованый с адипиновой кислотой и содой, быстрорастворимые таблетки. Стоит отметить, что для полевой дезинфекции могут использоваться и таблетки для обеззараживания бассейнов (двухкомпонентные, содержащие смесь хлорит хлорат карбонат натрия и гидросульфат натрия), продуцирующие диоксид хлора. В целом, такой вариант подходит и для обеззараживания питьевой воды. Причем этот вариант, например, эффективен против

больше чем обычный хлор. Все описанные варианты — удобны in situ (туристы, военные, МЧС и т.п.). Для вариантов вроде стихийного бедствия или какой-нибудь техногенной катастрофы таблетки могут быть недоступны, а то и слишком дороги. Для этой цели вполне можно использовать и Белизну (желательно без всяких ПАВ-ов и отдушек).

Предлагаем ознакомиться  Средство для устранения запаха плесени с мебели

CDC в рамках своей стратегии «Безопасная система водоснабжения» (SWS) для развивающихся стран рекомендует для обеззараживания воды использовать 0,5–1,5% раствор гипохлорита натрия (две-три капли на литр и экспозиция 30 минут). EPA, кстати, советует использовать 8,25% раствор гипохлорита натрия (две капли на литр и экспозиция 30 минут), важное замечание "удвойте количество отбеливателя, если вода мутная, окрашенная или очень холодная. после обработки вода должна иметь слабый запах хлора.

Опасное соседство — несовместимая бытовая химия

Гипохлорит натрия, являясь очень активным компонентом, легко вступает в химические реакции (в т.ч. и в фотохимические — т.е. с солнечным светом и ультрафиолетом от популярных ныне бактерицидных ламп). Часто в результате этих реакций выделяется хлор (=серьезный раздражающий агент), например при контакте нашей белизны и средства для очистки от ржавчины.

NH3 NaOCl → NaOH NH2Cl
NH2Cl NaOCl → NaOH NHCl2
NHCl2 NaOCl → NaOH NCl3


При контакте белизны с некоторыми бытовыми моющими средствами, содержащими ПАВы и различные отдушки могут образовываться летучие (!) хлорорганические соединения, вроде четыреххлористого углерода (CCl

4

) и хлороформа (CHCl

3

). Классы их опасности каждый может посмотреть сам. Например в

исследователи показали, что при работе с некоторыми «хитрыми» средствами бытовой химии концентрации этих растворителей повышаются в 8–52 раза для хлороформа и в 1–1170 раз для четыреххлористого углерода выше допустимых соответственно. Самый низкий «выхлоп» летучей хлорорганики дает самый простой отбеливатель (читай «белизна»), а вот самый высокий — средства в форме «густой жидкости и геля» (типа всяких там Доместосов и иже с ними, которые и развести толком нельзя).

Поэтому, на будущее, а) стоит всячески избегать «суперэффективных средств с новой формулой» (= дерьма, которое разработал менеджер, а не инженер) и придерживаться классической формулы «лучшая белизна = гипохлорит да вода». И б) использовать при уборке квартиры респираторы с угольным фильтром (=«для задерживания паров растворителей»).

С перекисью водорода гипохлорит натрия реагирует достаточно бурно, с образованием хлорида натрия (ваша любимая поваренная соль) и кислорода:

H2O2 NaOCl → NaCl (водный) H2O O2

Гетерогенные реакции гипохлорита с металлами протекают достаточно медленно и дают в результате оксид металла (ну или гидроксид). На примере цинка:

NaOCl Zn → ZnO NaCl

С различными комплексами металлов белизна реагирует не в пример быстрее.

Как уже упоминалось, гипохлорит натрия не любит высокую температуру (выше 30°C), и при нагревании распадается на хлорат натрия и кислород (для 5% раствора температура разложения ~40°C), если удастся нагреть до 70°С разложение может протекать со взрывом.

В целом, гипохлорит высоких концентраций негорюч и взрывобезопасен. Но при контакте с органическими горючими веществами (опилки, ветошь и др.) в процессе высыхания может вызывать возгорание. Вообще, такая реакционная способность — это одновременно и благо, т.к. вещество не может долго находится в неизменном состоянии в окружающей среде и быстро дезактивируется (=можно просто смыть в сточные воды).

В качестве выводов — все написанное выше сведено в единую таблицу несовместимых компонентов (кликабельна).


Некоторые из этих соединений можно найти в бытовых, автомобильных и промышленных химикалиях и смесях химикалий = средства для чистки окон, унитазов и поверхностей, обезжиривающие средства, антифризы, средства для очистки воды, химия для бань и бассейнов. Поэтому чаще смотрите на этикетку. Требуйте, чтобы на этикетке писали состав! Покупайте только то средство, где на этикетке есть максимальная информация о составе. Пора уже голосовать рублем за адекватное отношение к покупателю.

Стабильность и сроки хранения (=есть ли смысл закупать впрок?)

Если химия и медицина для рядового технаря не особо интересны (достаточно знать работает или нет), то вопросы стабильности при хранении — наоборот, первостепенны. Ведь гипохлорит натрия — вещество малостабильное. При комнатной температуре распадается примерно 0,75 г активного хлора в сутки, т.е. раствор с содержанием 250 г/л гипохлорита натрия теряет примерно половину активного хлора за 5 мес, с содержанием 100 г/л - за 7 мес, 50 г/л - за 2 года, а 25 г/л - за 5–6 лет.

Предлагаем ознакомиться  Как вымыть душевую кабину в домашних условиях

Его устойчивость зависит от ряда факторов:

  • Концентрация гипохлорита
  • Температура
  • Щелочность и значение pH
  • Концентрация примесей, которые катализируют разложение и/или образование хлоратов
  • Воздействие света

В большинстве случаев распад протекает по таким вот основным механизмам:

2NaOCl → 2NaCl O2 (A)
3NaOCl → 2NaCl NaClO3 (B)

Пройдусь по каждому пункту отдельно:

Концентрация: чем более концентрированный раствор, тем быстрее он разлагается, соответственно самые слабые растворы — самые стабильные. Литературные данные указывают на то, что при снижении концентрации гипохлорита натрия в два раза, скорость разложения уменьшается в 5 раз. Это связано с уменьшением общей концентрации ионов и со снижением ионной силы раствора.

Температура: распад гипохлорита с повышением температуры в 90% случаев проходит по уравнению (B). Можно держать в уме следующее правило — скорость разложения возрастает в 3–4 раза, для каждых 10 °C для растворов с концентрациями гипохлорита натрия от 5 до 16%. А если напрячься и снизить температуру хранения хлорки до 5 °C (при условии полного отсутствия примесей металлов и других факторов ускоряющих разложение), то хранить в темной бутылке можно будет практически вечно.

Щелочность и рН раствора: для стабильного хранения раствор гипохлорита должен иметь pH от 11,5 до 12,5. В случае разбавленных растворов NaOCl при pH ниже 10,8 скорость разложения начинает значительно увеличиваться, достигая максимального значения в диапазоне 5-9. Но здесь есть нюанс. Когда рН раствора уменьшается, содержание HOCl увеличивается и растет окислительно-восстановительный потенциал (см. картинку с изменением форм активного хлора в растворе гипохлорита натрия в зависимости от рН раствора, Сl2 — молекулярный хлор, ClO–-гипохлорит-ион, HClO-хлорноватистая кислота).

Т.е. для хранения оптимальнее высокощелочные растворы, а для экстренной дезинфекции — растворы с низким рН. Хотя, говоря начистоту, повышать рН тоже необходимо до разумного предела. Если pH превышает значение 13 — скорость разложения опять скачкообразно увеличивается. Это происходит из-за увеличения ионной силы раствора, вызванного присутствием сильного избытка щелочи (NaOH).

В целом можно использовать за правило — для хлор-содержащих дезсредств используем только щелочную среду. Для пероксидных дезсредств — наиболее эффективна кислая среда. ЧАС-ы несовместимы с кислотами и резко теряют в их присутствии свои дезинфицирующие свойства. Альдегиды (вроде формалина и глутаральдегида) — работают и в кислой, и в щелочной среде)

Примеси: алюминий, медь, никель, железо, кобальт, марганец и т.д. являются катализаторами разложения NaOCl. Металлы в основном катализируют разложение по реакции (A) с образованием газообразного кислорода. Твердые суспензии, такие как, например, частицы графита в гипохлорите натрия, получаемом электрохимическим методом, также вызывают разложение NaOCl, в частности, по реакции (B) с образованием хлората натрия. Кстати, как говорят некоторые производители дезсредств, добавки сульфата магния, силиката натрия, борной кислоты -  замедляют распад.

Воздействие света: воздействие света ускоряет процесс разложения NaOCl в растворе. Современные методы упаковки и использование непрозрачных полиэтиленовых бутылок практически исключают влияние света на стабильность растворов. Янтарные или зеленые стеклянные бутылки также имеют такой же результат. Если важны конкретные цифры — получится вот так:

Для предотвращения разложения гипохлорита требуется контейнер, который отсекает свет ниже 475 нм и пропускает менее 2% при 500 нм.

Подводя итог, можно сказать следующее. Самым долгоиграющим будет препарат, который:

  • Имеет низкую концентрацию гипохлорита
  • 11,5{amp}lt; рН в диапазоне {amp}gt;13
  • В котором отсутствуют примеси металлов/графита (=отфильтрованный)
  • Хранится при температуре {amp}lt;30°С (=в холодильнике)
  • Упакован в абсолютно непроницаемые для света контейнеры

Хлорочка как отбеливатель

Отбеливающий эффект гипохлорита — это целиком и полностью заслуга неустойчивой хлорноватистой кислоты. Ибо эта HClO является очень сильным окислителем (даже сильнее, чем газообразный Cl

Предлагаем ознакомиться  Как почистить стиральную машину уксусом (содой): от накипи, запаха

2

) и может реагировать и разрушать многие типы молекул, включая красители. В водной среде гипохлорит натрия NaOCl обратимо гидролизуется с образованием хлорноватистой кислоты и щелочи:

NaOCl H2O → HOCl NaOH


В свою очередь хлорноватистая кислота HOCl распадается на атомарный кислород (O*) и соляную кислоту:

HOCl → HCl O*

Ну а атомарный кислород — очень ядреная штука, один из мощнейших окислителей на нашей планете. Кстати, именно благодаря атомарному кислороду озон проявляет свои бактерицидные свойства. Так что, в некотором роде, озон и гипохлорит натрия — «кислородные братья» 🙂

Отбеливающая способность гипохлорита натрия (и подобных ему химикатов) обусловлена их способностью разрушать светопоглощающие структуры (т.н. хромофоры) в органических молекулах. Притом это могут быть не только хромофоры на тканях. Гипохлорит неплохо отбеливает пятна плесени на плитке, зубные пятна, вызванные флюорозом и удаляет пятна от танинов чая на кружках (т.н. «чайный камень»).

если в школе химию знал на тройку - спойлер можешь даже не открывать

Хромофоры часто связаны с сопряженными системами, которые представляют собой структуры с чередующимися одинарными и двойными связями. Электроны в сопряженных системах делокализованы и способны существовать на разных молекулярных орбиталях. Электрон в определенном орбитальном состоянии может поглощать энергию и подниматься до более высокого энергетического состояния. Электронные переходы, возникающие в результате поглощения определенных длин волн, создают цвет, который является визуальным дополнением к длине волны поглощенного света. Атомарный кислород гипохлорита натрия либо разрушает сам хромофор, либо разрушает двойные связи в нем и изменяет краситель так, что он больше не может поглощать видимый свет «окрашивающей» длины волны.

Справедливости ради, стоит отметить, что хлорноватистая кислота образует соли не только с натрием, но и, например, с кальцием. Примером может служить та самая хлорная известь, широко используемая из-за своей дешевизны для дезинфекции складских помещений, животноводческих ферм, туалетов и т.д и т.п. На долю гипохлорита натрия приходится около 83% мирового потребления (в роли отбеливателя/дезинфектанта), на хлорную известь — остается 17%.

В 2005 году в мире было использовано около 1 миллиона тонн гипохлорита натрия, причем около 53% этого количества использовалось в домашних хозяйствах для дезинфекции и отбеливания белья ( мытья, т.к. щелочная среда раствора гипохлорита неплохо омыляет жиры и делает их водорастворимыми). Оставшиеся 47% приходились на очистку сточных вод и подготовку питьевой воды (а также очистку бассейнов и градирен ГЭС от биообрастания/водорослей/моллюсков, отбеливание целлюлозы/бумаги/тканей, и использование в роли реактива для химических синтезов).

Чем больше хлора – тем меньше запах

Как ни странно, резкий запах от воды вовсе не означает, что в воде слишком много хлора. Наоборот, это означает, что хлора недостаточно. Парадокс? Да, но только на первый взгляд.

Дело в том, что, попадая в воду, соединения хлора образуют свободный хлор, который обладает мощным дезинфицирующим действием. Свободный хлор при правильной дозировке и параметре жесткости воды от 7,2 до 7,6 полностью растворяется в воде и не выделяется из нее.Соответственно, он не дает ни запаха, ни тех отрицательных явлений, за которые хлор так не любят – покраснение глаз, раздражение кожи.

Все неприятности, которые приписывают хлору, происходят из-за хлораминов – соединений хлора с аммиаком. Практически всегда в воде присутствуют соединения аммиака, которые способны связывать свободный хлор. Аммиак попадает в воду с кожи купальщиков – он содержится в поту, кожном жире, других выделениях кожи. Хлорамины легко испаряются с поверхности воды, дают запах и раздражают слизистые и кожу.

Наиболее часто проблема хлорного запаха встречается в крытых бассейнах с большой проходимостью – во-первых, в такой воде множество соединений аммиака, а во-вторых, отсутствует положительное действие ультрафиолетовых лучей, разрушающих хлорамины.

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Поделиться
Похожие записи
Комментарии:
Комментариев еще нет. Будь первым!
Имя
Укажите своё имя и фамилию
E-mail
Без СПАМа, обещаем
Текст сообщения
Adblock detector